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ABSTRACT

Virtual reality applications may accomplish richer and more im-
mersive experiences by incorporating physical interactions such as
passive haptic feedback. These interactions require that the coordi-
nate mapping between the physical and virtual environment remains
fixed. However, a static relationship is not maintained by many com-
mon locomotion techniques, including redirected walking, resulting
in a state of misalignment. In this work, we address this limita-
tion by proposing a novel reactive algorithm that uses redirected
walking techniques to transition the system from a misaligned state
to an aligned state, thereby enabling the user to interact with the
physical environment. Traditionally, redirected walking algorithms
primarily optimize for avoiding collisions with the boundaries of the
physical space, whereas the proposed method leverages redirection
techniques to achieve a desired system configuration. Simulation-
based experiments demonstrate an effective use of this strategy when
combined with redirected walking using artificial potential functions.
In the future, reactive environment alignment can enhance the in-
teractivity of virtual reality applications and inform new research
vectors that combine redirected walking and passive haptics.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Virtual reality;

1 INTRODUCTION

Due to advances in immersive technology, “room-scale” and po-
tentially even “building-scale” virtual reality (VR) experiences are
becoming increasingly more available to developers and consumers.
Along with the numerous benefits that these emerging technologies
provide, they also present new challenges. One of the fundamental
problems that VR researchers and designers have to solve is loco-
motion: movement through the virtual world. Specifically, how can
the user navigate the virtual world while maximizing the available
physical space?

A particularly compelling use of the physical space is to provide
the user with a VR experience that leverages physical interaction.
Research has shown this can significantly enhance the user’s experi-
ence [8, 9]. These physical interactions require that the relationship,
or mapping, between the user’s virtual and physical pose remains
constant. A constant mapping will always have the same offset
between the user’s virtual and physical pose. As a result, it cannot
be modified by the user’s interactions with the virtual world (e.g.
translating, rotating, interfacing). Alternatively, a variable mapping
allows for transformations between the user’s physical and virtual
poses. These could be the result of either user interactions or system
manipulations.

Most locomotion techniques for navigation in VR, including
common strategies such teleportation and flying, require variable
mappings. With these techniques, the user translates and rotates
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their virtual pose without altering their physical pose. This intro-
duces a variable offset between the two poses. Conversely, if the
user navigates by walking, they have to physically move in order
to virtually move. Traditionally, this movement in the virtual envi-
ronment is equal in magnitude and direction to the movement in the
physical environment, and because of this, a constant mapping is
maintained. However, redirected walking (RDW) is a locomotion
technique that does not retain a constant mapping. Rather, RDW
changes the user’s mapping on a frame-per-frame basis in a unpre-
dictable way to maximize the physical space. This prevents VR
experiences that use RDW algorithms from incorporating physical
interactions. To address this deficiency, we propose a novel method
for aligning the virtual and physical environment using RDW.

At the 2019 IEEE Conference on Virtual Reality and 3D User
Interfaces, three papers were presented that collectively represent
a new computational framework for RDW: the Push/Pull Reactive
(P2R) algorithm [23] and Artificial Potential Field RDW (APF-
RDW) [4, 15]. Although they differ in some implementation details,
the two algorithms both employ artificial potential functions, a con-
cept adapted from the field of robotics [10, 11, 13]. The range of an
artificial potential function represents an abstract energy and the do-
main is comprised of the set of all possible system states. More ideal
system states have a lower energy, and less ideal system states have
a higher energy. Generally, the goal of the system is to be in a state
that has the lowest corresponding energy. The P2R and APF-RDW
algorithms calculate the energy at a location within the physical
environment by using the euclidean distances from the location to
obstacles and boundaries. This results in the minima of the artificial
potential function being the physical environment locations that are
the furthest away from obstacles and boundaries. By then calculating
the negative gradient of the potential function at the user’s position,
the algorithms can choose RDW gains to steer the user in the most
ideal direction. Artificial potential functions typically have an attrac-
tive component and a repulsive component, however, the algorithms
presented for RDW only featured the repulsive component.

In this work, we investigate the use of the attractive force compo-
nent of artificial potential functions to achieve system configurations
that would support interaction with the physical environment, a pro-
cess we define as alignment. To the best of our knowledge, previous
research in computational approaches for RDW have exclusively
focused on avoidance of physical obstacles [15, 23] or collisions
between multiple users [4]. Therefore, this project represents a fun-
damentally new direction that can address one of the major usability
limitations of current VR applications. Major contributions of this
paper include:

• The introduction of alignment, a novel use of RDW that ad-
dresses a prominent problem with VR locomotion techniques.

• The extension of an existing RDW algorithm that supports
both obstacle avoidance and alignment redirection.

• An experiment that evaluates the effects of manipulating reac-
tive alignment implementation variables.

• An experiment that evaluates the capability of reactive align-
ment to reverse the mapping offsets introduced when using
conventional RDW algorithms.

These contributions lay the foundation for future research into more
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advanced algorithms for alignment, including predictive methods.

2 BACKGROUND AND RELATED WORKS

Real walking as a locomotion technique provides several benefits
over other techniques including improved navigability [20] and sense
of presence [24]. RDW maintains the benefits of real walking, but
introduces subtle manipulations to the user’s movement to better use
the available physical space. It works by slowly and continuously
amplifying or diminishing a component of the user’s movement in
the virtual environment, and is most commonly implemented us-
ing a combination of three self-motion illusions [19]. Translation
gain techniques measure changes in tracked head position and scale
the user’s movement in the forward direction, enabling travel over
smaller or greater distances in the virtual world. Rotation gain tech-
niques measure the change in tracked head orientation and scale the
corresponding virtual rotation to reorient the user towards a target
location, usually away from physical obstacles. Curvature gain
techniques work by adding offsets to real world movements, for
example, by slowly rotating the virtual world while walking forward.
Users will subsequently compensate for the offset by walking along
a circular arc. Human sensitivity to self-motion illusions can be
measured empirically and RDW is often implemented using the
average detection thresholds calculated by Steinicke et al. [21]. In
most cases, the user will inevitably enter a collision course with a
boundary or obstacle, at which point the system will introduce a
reorientation event, or a reset [25]. Resets pause the user’s experi-
ence and reorient them to a physical direction that is favorable for
the RDW system. These events are disrupting to the user’s expe-
rience, thus it is advantageous to minimize them. For this reason,
the number of resets is often a metric used when evaluating RDW
systems.

Over the past 15 years, there has been an extensive volume of
literature on RDW; a recent community-authored review can be
found in Nilsson et al. [17]. A large amount of research effort
focuses on developing and evaluating RDW algorithms. These
algorithms choose which gain to apply when, and to what degree.
Generally, these algorithms are considered to be either reactive or
predictive, with predictive algorithms being further categorized as
static or dynamic.

Reactive Algorithms Reactive algorithms, such as Steer-to-
Center (S2C) and Steer-to-Orbit (S2O) [18], are the simplest RDW
algorithms. They have no knowledge of the user’s intended trajec-
tory and react to the current system state in order to provide local
optimization. Typically, these algorithms work on a single heuristic.
S2C always applies gains that steer the user toward the center of
the physical environment, while S2O steers the user to a predefined
circle around the center of the physical environment. Hodgson et
al. showed that in most scenarios, S2C outperforms other reactive
algorithms [7], however, they posit that S2O might outperform S2C
if the virtual path is long and consists of very few turns. Azmandian
et al. further compared reactive algorithms in a variety physical
environment sizes and aspect ratios [2]. The results reinforce those
found by Hodgson et al., showing that S2C outperforms the other
reactive algorithms in most practical use cases. However, a new
class of reactive algorithms using artificial potential functions in-
stead of a heuristic exhibit more complex behaviors. Thomas et al.
and Messinger et al. showed that this class of algorithms performs
better than S2C whenever the environment is non-convex or contains
obstacles [15, 23], and Bachmann et al. showed that they can be
used to effectively implement multi-user RDW [4].

Predictive Algorithms Predictive algorithms have some sort of
knowledge regarding the user’s future movements, and can plan for
them accordingly. Unlike reactive algorithms, which optimize for the
instantaneous state of the system, predictive algorithms can greatly
reduce the number of resets by selecting gains that optimizes for a
known future trajectory. In his dissertation, Mahdi Azmandian broke

predictive algorithms into two further categories: static planning and
dynamic planning [1]. The simplest way to obtain knowledge about
the user’s future movement is to have the user follow a pre-defined
virtual path. If it is safe to assume that the user will follow the
predefined path without deviation, then static planning algorithms
can be used. Azmandian provided a static planning algorithm called
COPPER and in some scenarios the user would not encounter a
single reset. When they can be applied, static planning algorithms
far out-perform all other RDW algorithms [1]. If the system cannot
rely on a static planning algorithm, dynamic planning algorithms
are the ideal alternative. Dynamic planning algorithms, such as
FORCE [28] and MPCRed [16], work by attempting to predict the
most likely virtual path the user will take and selecting gains that
optimize for it. Currently, this class of algorithms only works when
the number of movement direction options of a user is fairly low
(e.g. in a maze or an indoor system of corridors).

Physical Interactions There is an extensive body of research
on interacting with physical objects in VR. One key interaction
technique is passive haptics, where a generic physical object is
mapped to a specific virtual object. When the user attempts to
interact with the virtual object, they also interact with the physical
object. It has been shown that if the physical object closely resembles
the virtual object, an enhanced level of presence can be achieved
[8, 9]. As previously stated, RDW generally eliminates planned
physical interactions in a VR experience. However, with careful
planning and custom implementation of RDW gains, it is possible to
overcome this deficiency. Kohli et al. described a method in which
the experience narrative, in conjunction with carefully chosen RDW
gains, would bring the user from one virtual pedestal to another while
physically returning to the same physical pedestal [12]. The pedestal,
which was cylindrical in shape, was chosen due to its rotational
invariance; the user could approach it from any angle and it would
still be “rotationally aligned” with the virtual pedestal. Steinicke
et al. created a scenario in which the virtual environment was a
larger version of the physical environment, which was square and
consisted of a single square obstacle in the center [22]. Thus, RDW
gains could make the virtual environment fit within the physical
environment, and the single square obstacle, which the users could
interact with, remained aligned to the virtual square object.

3 ALIGNMENT OF VIRTUAL AND PHYSICAL SPACES

We define alignment as the process of transforming an arbitrary
mapping to a desired mapping using RDW techniques. Alignment
does not provide a constant mapping, but rather attempts to guarantee
a specific mapping when certain conditions within the VR experience
are met. An example set of conditions that we explored in this work
result in environment alignment, which attempts to guarantee that
within some pre-defined region of the virtual environment, the user
can interact with the physical environment. This region is defined in
reference to the virtual environment because the virtual environment
is what is driving the user’s experience and decisions.

3.1 Mathematical Foundations
Artificial potential function based RDW algorithms are an ideal
foundation for implementing alignment as they have an attractive
force component that can be leveraged for alignment. The mathe-
matical framework provided for P2R includes both an attractive and
repulsive component for the artificial potential function, although
the authors stated that only the repulsive component is used to keep
the user away from boundaries and obstacles (which we define as
avoidance redirection). To implement alignment, we extended P2R
and made use of the previously unused attractive component.

Equation 1 shows the potential function used by P2R given the
set of obstacles O. The value of the potential function at a user’s
position q is one half the distance to the goal position plus the sum of
one over the distance to the obstacle’s nearest point for all obstacles.
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U(q) =
1

2
||q−qgoal || + ∑

ob∈O

1

||q−qob||
(1)

Equation 1 can be broken into two components: an attractive
force (Equation 2) and a repulsive force (Equation 3).

Uattractive(q) =
1

2
||q−qgoal || (2)

Urepulsive(q) = ∑
ob∈O

1

||q−qob||
(3)

Each frame, P2R uses the centered finite difference method to
calculate the negative gradient, −∇U(q), of the potential function at
the user’s position, q. −∇U(q) is then used to determine the ideal
steering direction and compute RDW gains.

3.1.1 Configuration Spaces
Equation 1 has a domain that consists of the physical environment’s
Cartesian coordinates. This is sufficient when the system is only
steering the user away from physical obstacles, but alignment re-
quires that the system has knowledge of both the physical and virtual
environments. To accommodate for this we extended the potential
function’s domain to work on a more general configuration space.

Configuration spaces are another concept from the field of
robotics. The configuration space of a robot is a higher dimensional
space where each dimension represents one degree of freedom [14].
Any possible configuration of a robot is represented in the config-
uration space as a single point, referred to as a configuration. In
robotics, configuration spaces are desirable because given a starting
configuration and a goal configuration, any multitude of path plan-
ning algorithms can be used to generate a viable path through the
configuration space.

In the case of RDW, configuration spaces are desirable because
they can represent the state of the entire system. For example,
the user’s physical position and orientation as well as their virtual
position and orientation can be uniquely represented as a single point.
Paths through such a configuration space could result in changing
the user’s physical position and orientation at different rates than
their virtual position and orientation. We can use this difference to
calculate which RDW gains to apply, and at what levels, to get the
user to navigate the most optimal path through the configuration
space.

3.1.2 Utility Functions
This potential function (Equation 1) assumes that a single goal
(which is itself a single point in the configuration space) and a single
set of obstacles are being used. This is limiting in both the number
and richness of user interactions it can provide. To overcome this
we propose generalizing the potential function previously used with
utility functions. A utility function takes the form:

u(q) = A||q−qu||B (4)

Here, A and B are variables that are selected to define what the
utility function does, and qu is the point in an associated region
(which itself can be a single point) of the configuration space that is
closest to q. The new potential function is simply the sum of all the
utility functions.

U(q) =

n

∑
i=1

ui(q) (5)

It should be pointed out here that the attractive component (Equa-
tion 2) and repulsive component (Equation 3) of the original potential
function can both be represented using utility functions. To represent

the attractive component, select A to be 1
2 , B to be 1, and qu to be

qgoal . To represent the repulsive component, create a utility function
for each obstacle and select A to be 1, B to be −1, and qu to be qob.
In general, A is set to determine the prevalence of the utility function
and B is set to determine if the utility function is attractive (B > 0)
or repulsive (B < 0).

3.2 Alignment Algorithm
A set of alignment conditions and the appropriate utility function
were developed to add alignment capabilities to P2R. The set of con-
ditions for environment alignment is fairly straight forward: when
a user’s virtual pose is located within a pre-defined region of the
virtual environment, their mapping should be constant and equal to
the offset between the physical and virtual origins. We define such a
mapping as an identity mapping. Transforming from an arbitrary
mapping to an identity mapping can be accomplished by adding an
attractive utility function, which will operate on the configuration
space C.

C = {q ∈ R
6 | q = {xp,yp,θp,xv,yv,θv}} (6)

The variables xp,yp,θp represent the user’s physical position
and heading, and the variables xv,yv,θv represent the user’s virtual
position and heading. Within this configuration space a region, Ca,
is defined such that it represents all possible configurations that meet
our alignment conditions.

Ca = {q ∈C | αx ≤ xv ≤ βx

∧αy ≤ yv ≤ βy

∧{xp,yp,θp}−{xv,yv,θv}= {xo,yo,θo}}
(7)

The variables α and β define a rectangular region within the
virtual environment where an identity mapping is desired. αx and
αy represent the lower boundaries for xv and yv respectively, and
βx and βy represent the upper boundaries for xv and yv respectively.
{xo,yo,θo} represents the offset between the physical and virtual
origins. If αx = βx and αy = βy then the alignment region is a single
point. This equation essentially states that if the user is within the
virtual region defined by α and β , and the offset between their virtual
and physical poses is the same as the offset between the virtual and
physical origins, then they are aligned.

Equation 8 shows the resulting utility function, where qa is the
point within Ca that is closest to the user’s configuration. As the
utility function needs to be attractive, Ba needs to be greater than 0.
We call this utility function the alignment utility function, and will
be used in both Experiments 1 and 2. A value of 2 was selected for
Ba after informal experimentation, but future research is necessary
to determine the exact effect Ba has.

ua(q) = Aa||q−qa||Ba (8)

Equation 9 shows the avoidance utility function that steers the
user to avoid boundaries and obstacles. qo is the configuration
closest to the obstacle region Co, which contains every configuration
that would result in a boundary or obstacle collision. Ao was chosen
to be 1 and Bo was chosen to be −1, as those were the values used
in the original literature [23].

uo(q) = Ao||q−qo||Bo (9)

4 EXPERIMENTS

4.1 Simulation Framework
The two experiments reported in this paper were conducted using
simulation. It is necessary to run a very large number of trials and
test numerous possible parameters to comprehensively evaluate the
performance of RDW algorithms, which is impractical for live user
studies. For this reason, simulation-based evaluation is a common
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Ep =
√

(xp−user − xp−goal)2 +(yp−user − yp−goal)2 +(xv−user − xv−goal)2 +(yv−user − yv−goal)2 (10)

practice in the RDW literature (e.g. [2, 3, 7, 23, 28]). RDW gain
thresholds used when evaluating RDW algorithms via simulation
do not deviate for those determined in previous literature as being
unnoticeable by human users. As such, we can assume that the
findings from simulation based experiments will translate to a human
user population. The work presented in this paper is modifying an
existing RDW algorithm, and though we are using RDW techniques
in a new way, we maintain that the same arguments could be made for
why simulation is a valid evaluation technique for reactive alignment
as we are using gain thresholds within the determined perceptual
limits.

The simulations were run on a Dell PowerEdge R815 with 4x
AMD Opteron 6220 processor and 192GB of RAM. All simula-
tions were run with a fixed framerate of 90 fps. Each permutation
consisted of 100 trials, and at the start of a trial the simulated user
would turn to face the first waypoint and then walk directly towards
it. Upon reaching a waypoint the simulated user would stop, turn
to face the next waypoint, and again walk directly towards it. This
would continue until the simulated user reached the final waypoint.
The simulated user turned at a constant rate of π

2 radians per second
and translated at a constant speed of 1 meter per second. The physi-
cal component of the simulated user would be redirected using the
modified P2R algorithm. Translation and rotation gains were lim-
ited to the detection thresholds determined by Steinicke et al. [21].
The maximum curvature was set to a radius of 7.5m, which is a
commonly employed threshold value [2, 7]. The simulated physical
environment consisted of a 10m x 10m square environment with
no obstacles. A reset was triggered upon intersection with one of
the boundaries and the simulated user’s virtual representation would
complete a full rotation and their physical representation would
rotate to face the center of the physical environment.

Most RDW algorithms dynamically modify the gain values on
a frame-per-frame basis. In a recently published perceptual study,
Cogdon et al. explored human sensitivity to the rate of change of
rotation gains and suggested that slow changes are harder to detect
than sudden ones [5]. However, there is currently a lack of concrete
understanding of how the rate of gain changes should be modu-
lated by a RDW system and how specific implementations of gain
smoothing may interact with other algorithm parameters. There-
fore, the simulations in this paper did not apply temporal smoothing
to rotation, translation, or curvature gains. The experiments were
conducted to compare relative performance of different alignment
strategies under a consistent set of conditions, and will therefore
provide generally applicable insight into their advantages and dis-
advantages of these methods. However, we do plan to investigate
modulation of dynamic gain changes in the context of redirection
and alignment in future work.

4.2 Experiment 1
The purpose of Experiment 1 was to explore a couple of the variables
that can be manipulated when applying alignment in a reactive man-
ner. Two such variables were tested in a 2x2 experiment design. For
each trial, the simulated user would start at the center of the physical
environment facing along the positive y axis, and navigate a virtual
path consisting of 20 waypoints. Each waypoint was generated
at a random distance from the previous waypoint using a uniform
distribution between 2 and 6 meters. Similarly, each waypoint was
generated at a random rotation from the previous waypoint using a
uniform distribution between −π and π radians. The virtual align-
ment target was located at the final waypoint, facing the direction
the simulated user would be facing when walking from the second

to last waypoint. Each permutation used the same ordered set of 100
virtual paths and alignment targets.

The first independent variable was the alignment utility function
weight parameter and had two conditions: statically weighted (SW),
dynamically weighted (DW). The utility function shown in Equa-
tion 8 has a weight parameter, Aa, and this parameter increases or
decreases the amount of influence the alignment utility function has

over other utility functions.DW will use a Aa value of 1
dv

, where dv
is the distance between the virtual component of Ca and the virtual
pose of the user, and SW will use a Aa value of 1. Both avoid-
ance redirection and alignment redirection were being applied at the
same time, so the alignment weight parameter will determine how
the alignment utility function interacts with the avoidance utility
function.

The second independent variable is the prioritization of the nega-
tive gradient’s positional components versus its rotational compo-
nents and had two conditions: position priority (PP) and orientation
priority (OP). Aligning a user’s mapping requires the user to reach a
specific position and orientation, both physically and virtually. The
first method that comes to mind is to use a potential function that
attracts the user to the goal positions and orientations simultane-
ously.However, it may be the case that the system wants to alter the
user’s position in such a way that would result in rotating one direc-
tion, and their orientation in such a way that would result in rotating
in the other direction. As the user cannot rotate in both directions
at once, the system must choose to prioritize the positional steering
component, or the rotational steering component.

Experiment 1 had two dependent variables: the number of resets,
and the positional alignment error (Ep). The number of resets will
provide insight into the effectiveness of the avoidance redirection
component as independent variables are changed, and the positional
alignment error will provide insight into the alignment redirection
component. Positional alignment error, shown in Equation 10, is
the the Euclidean distance between the positional components of the
user’s final configuration and the alignment goal configuration. To
simplify the study, we chose to focus on positional alignment error
and not explore the effects on rotational alignment error. Once the
user’s mapping is aligned with respect to rotation, a simple reset will
align the rotational component of the user’s mapping.

For Experiment 1 we had the following hypotheses:

• H1: DW conditions will have a fewer number of resets com-
pared to the SW conditions. Dynamically weighting the align-
ment utility function will allow the avoidance redirection com-
ponent to have a greater effect for a greater amount time, which
should result in fewer resets.

• H2: DW conditions will have greater positional alignment
error. Similar to the reasoning behind H1, dynamically weight-
ing the alignment utility function will force the alignment
redirection component to have a lesser effect and for not as
long, which should result in greater positional alignment error.

• H3: OP conditions will have greater positional alignment error
compared to PP conditions.

4.2.1 Results
A Kolmogorov-Smirnov test for normality was conducted for both
dependent variables and they were not found to be normally dis-
tributed. Because of this, results for Experiment 1 were analyzed
using non-parametric techniques and the reported values are medians
(Mdn) and inter-quartile ranges (IQR). Results for Experiment 1
were analyzed using a Kruskal-Wallis H-test and the Mann-Whitney
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U test was used for post-hoc multiple comparison tests. A signifi-
cance value α = 0.05 was used for all tests. P-values reported for
post-hoc multiple comparison tests were adjusted using the Bonfer-
onni method.

Analysis of the number of resets found a significant differ-
ence H(5) = 227.13, p < 0.001, η2 = 0.374. Post-hoc analysis
found significantly fewer resets were encountered with the DW-
PP permutation (Mdn = 5, IQR = 2) than the DW-OP permutation
(Mdn = 9, IQR = 2, U = 356.0, p < 0.001), the SW-PP permuta-
tion (Mdn = 6, IQR = 3, U = 3115.0, p < 0.001), and the SW-OP
permutation (Mdn = 9, IQR = 3, U = 332.0, p < 0.001). Signifi-
cantly fewer resets were also encountered with the SW-PP permuta-
tion (Mdn = 6, IQR = 3) than the SW-OP permutation (Mdn = 9,
IQR = 3, U = 1190.0, p < 0.001) and the DW-OP permutation
(Mdn = 9, IQR = 2, U = 1274.5, p < 0.001).

Analysis of the positional alignment error found a significant
difference H(5) = 24.26, p < 0.001, η2 = 0.032. Post-hoc analy-
sis found significantly less error was encountered with the SW-PP
permutation (Mdn = 3.01, IQR = 3.09) than the SW-OP permu-
tation (Mdn = 4.87, IQR = 3.96, U = 3370.0, p < 0.001), and
the DW-OP permutation (Mdn = 4.64, IQR = 3.65, U = 3296.0,
p < 0.001). Significantly less error was also encountered with the
DW-PP condition (Mdn = 3.94, IQR = 2.74) than the DW-OP con-
dition (Mdn = 4.64, IQR = 3.65, U = 4009.0, p = 0.047).

4.2.2 Discussion

Experiment 1 shows some interesting results. First, orientation pri-
ority performed worse than position priority for both the number of
resets and positional alignment error. Additionally, when consider-
ing position priority, H1 and H2 were shown to be correct. Dynam-
ically weighting Aa resulted in fewer resets, but greater positional
alignment error. Finally, position priority resulted in significantly
lower positional alignment error, confirming H3, but it also resulted
in significantly fewer resets, which we did not predict.

In general, our results indicate that alignment using artificial po-
tential functions can reduce the positional discrepancy between the
virtual and physical space. However, it is important to note that
Experiment 1 was set up to evaluate the relative performance differ-
ences between variations in the implementation of alignment. As
such, the simulations were not constructed with the intention of re-
ducing the positional alignment error to zero. Because the algorithm
was purely reactive and the waypoints and alignment targets were
generated randomly, such an expectation would be unreasonable.
However, in the prior literature RDW can achieve greater effective-
ness using predictive approaches [16, 28] or custom-built narrative
scenarios [27]. In addition to reactive algorithms, these results can
inform the implementation of alignment within RDW systems that
are more sophisticated and complex. This points to the need for
further research that can build upon our initial exploration of reactive
alignment in a variety of contexts.

4.3 Experiment 2
For Experiment 1, alignment redirection and avoidance redirection
were both being applied at the same time. However, it is possible
to use only avoidance redirection and then switch to only applying
alignment redirection when the system would like the user to be-
come aligned. The purpose of Experiment 2 was to explore this
concept and determine to what degree reactive alignment can “undo”
the mapping discrepancies introduced by using RDW to avoid the
physical boundaries. To accomplish this, a 4x2 experimental design
was implemented. The task consisted of a simulated user walking d
virtual meters in a random direction, turning around, and walking
back to their starting location. The simulated user’s starting physical
location was randomly chosen within the physical environment (with
a 1m buffer) using a uniform distribution. We defined the alignment
utility function such that the simulated user’s starting configuration

was the singular alignment goal configuration. This means that the
simulated user started in an aligned state, and the goal was for the
user to return to the same physical and virtual locations at the end
of the trial. To help describe the experimental design, we define the
point where the virtual user turned around as the inflection waypoint.
Informed by the results from Experiment 1, position priority was
used, and as avoidance redirection and alignment redirection were
not being applied at the same time, the weighting had no effect.

The first independent variable was whether or not alignment was
applied after the inflection waypoint and had two possible conditions:
alignment and no alignment. In both conditions only avoidance redi-
rection was applied until the virtual user reached inflection waypoint.
The alignment condition would switch to only applying alignment
redirection at the inflection waypoint and the no alignment condition
would continue applying only avoidance redirection. The second
independent variable was the virtual distance between the simulated
user and the inflection waypoint (d) and had four possible conditions:
5m, 10m, 20m, and 30m. This condition allows us to explore what
effect the amount of distance navigated while employing alignment
redirection has on alignment effectiveness.

As in Experiment 1, Experiment 2 had two dependent variables:
number of resets and positional alignment error (Ep). Our hypothe-
ses for Experiment 2 were as follows:

• H1: Conditions with alignment would result in lower posi-
tional mapping error than the conditions with no alignment.
Trials with the no alignment conditions should theoretically
finish with the simulated user’s physical position pseudo-
randomly distributed around the physical environment. In
trials with alignment, the simulated user is being redirected to-
ward the goal configuration and should theoretically end closer
to the goal configuration.

• H2: Conditions with a longer virtual path would also result in
lower positional mapping error than conditions with a shorter
virtual path. The longer the user translates the more time the
system has to get the user in an aligned state.

• H3: Conditions with alignment would result in a greater num-
ber of resets as the redirection changes from avoiding bound-
aries to pursuing a goal position.

4.3.1 Results
A Kolmogorov-Smirnov test for normality was conducted for both
dependent variables and they were not found to be normally dis-
tributed. Because of this, results for Experiment 2 were analyzed
using non-parametric techniques and the reported values are medi-
ans (Mdn) and inter-quartile ranges (IQR). Inflection point distance
was not analyzed as a confounding factor, and the four conditions
were analyzed separately. The Mann-Whitney U test was used for
pair-wise testing and a significance value α = 0.05 was used.

For the 5m inflection waypoint distance, no significant difference
was found regarding final positional mapping error between the align-
ment condition (Mdn = 1.44, IQR = 0.71) and the no alignment
condition (Mdn = 1.65, IQR = 1.25). A significant difference was
found regarding the number of resets between the alignment condi-
tion (Mdn = 0, IQR = 2) and the no alignment condition (Mdn = 0,
IQR = 1) U = 4247, p = 0.015.

For the 10m inflection waypoint distance, a significant difference
was found regarding final positional mapping error between the
alignment condition (Mdn = 0.23, IQR = 1.27) and the no align-
ment condition (Mdn = 2.58, IQR = 2.60) U = 1469, p < 0.001.
No significant difference was found regarding the number of resets
between the alignment condition (Mdn = 2, IQR = 2) and the no
alignment condition (Mdn = 2, IQR = 2).

For the 20m inflection waypoint distance, a significant difference
was found regarding final positional mapping error between the
alignment condition (Mdn = 1.67, IQR = 2.15) and the no align-
ment condition (Mdn = 2.66, IQR = 2.10) U = 3185, p < 0.001.
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Figure 1: Experiment 1 number of resets (left) and, Experiment 2 positional alignment error, Ep (right). The bar represents the median value, the
box represents the IQR, and the whiskers represent the data spread not including outliers

No significant difference was found regarding the number of resets
between the alignment condition (Mdn = 3, IQR = 1) and the no
alignment condition (Mdn = 2, IQR = 2).

For the 30m inflection waypoint distance, no significant difference
was found regarding final positional mapping error between the align-
ment condition (Mdn = 3.03, IQR = 3.06) and the no alignment
condition (Mdn = 2.61, IQR = 2.42). A significant difference was
found regarding the number of resets between the alignment condi-
tion (Mdn = 5, IQR = 1) and the no alignment condition (Mdn = 4,
IQR = 0) U = 2828, p < 0.001.

4.3.2 Discussion
For Experiment 2, the alignment condition performed significantly
better than the no alignment condition regarding final positional
mapping error for the 10m and 20m inflection waypoint distances,
but no significant results were found for the 5m and 30m inflection
waypoint distances. Conversely, the alignment condition performed
significantly worse than the no alignment condition regarding the
number of resets for the 5m and 30m inflection waypoint distances,
but no significant results were found for the 10m and 20m inflection
waypoint distances. This points to the fact that there is an upper and
lower inflection waypoint distance threshold during which alignment
only redirection not only ceases to be beneficial, but can actually
be harmful. These results were consistent with our hypotheses re-
garding inflection waypoint distances of 10m and 20m, but were
inconsistent with our hypotheses regarding inflection waypoint dis-
tances of 5m and 30m. One potential interpretation of these results
is that there is an ideal virtual distance from the goal configura-
tion for the RDW algorithm to switch to alignment only redirection.
Other factors that were not studied in this experiment may have an
influence such as physical environment size, or the ratio of total
avoidance redirection with respect to alignment redirection. These
factors would be interesting to investigate in future experiments.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduced the concept of alignment, a novel me-
chanic that uses RDW techniques to align the user’s virtual and
physical worlds, thereby addressing a problem that exists with sev-
eral VR locomotion techniques. By enabling VR experiences to
leverage physical interactivity, alignment has the ability to increase
the level of immersion and sense of presence afforded by the medium.
This work presented the mathematical foundations and initial exper-
iments that point towards the value of future research, development,
and evaluation of new alignment techniques. To this end, we have
identified several interesting research vectors to inform future work.

In unconstrained scenarios, we do not expect RDW algorithms
to be able to perfectly keep the user away from boundaries and
obstacles, which is why resets are employed. We think that a sim-
ilar concept can be utilized to correct for the positional alignment
error remaining after alignment should be completed. One example
would be a positional reset, where instead of pausing the experience
to have the user rotate towards a more favorable orientation, we
employ an intervention that has the user translate to a particular
location. Gretchkin et al. implemented a similar concept, which
they called “Rotate and Walk” to achieve contextual relevant re-
sets [6]. We suggest that continuous alignment along with positional
resets may collectively represent a more generalizable solution, and
more research into combined techniques and algorithms would be
valuable.

One major problem posed by using RDW techniques to achieve a
desired mapping involves difficulties in steering the user in a specific
direction without also inducing rotation. For example, with rotation
and curvature gains, there is no way to steer users towards their right
while having them continue to face forward. In recently published
work, You et al. introduced a new RDW gain that would be able to
address this specific situation; however, this technique has yet to be
perceptually validated [26]. In general, new redirection techniques
that allow for more flexible manipulations of the user’s mapping
would increase the effectiveness of alignment algorithms.

We demonstrated how alignment can be used in conjunction with
avoidance RDW to converge a user’s mapping, which could poten-
tially be used to enable interactions with the physical environment.
However, as previously stated, there are several other locomotion
techniques that do not maintain a constant mapping. A growing num-
ber of VR applications are designing for “room-scale VR,” and with
the recent advent of head mounted displays that support inside-out
tracking, the concept of “building-scale VR” is also emerging. These
applications commonly use locomotion techniques that involve a
combination of limited physical walking for navigation within the
bounds of the physical environment, along with virtual locomotion
for navigating over greater distances. Because these experiences al-
low for physical movement, they have the ability to employ physical
interactions to enhance the user’s experience. However, as soon as
the virtual locomotion mechanism is utilized, the user’s mapping
diverges and physical interactions will break. It would be interest-
ing to develop new locomotion interfaces that combine continuous
alignment during physical movement with subtle positional resets
integrated into virtual movement. In general, there is great potential
in algorithms and interfaces based on alignment, and exploring them
will be a promising line of future research.
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