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Abstract—We describe two approaches for unobtrusively
sensing subtle nonverbal behaviors using a consumer-level
depth sensing camera. The first signal, respiratory rate, is
estimated by measuring the visual expansion and contraction
of the user’s chest cavity during inhalation and exhalation.
Additionally, we detect a specific type of fidgeting behavior,
known as “leg jiggling,” by measuring high-frequency vertical
oscillations of the user’s knees. Both of these techniques rely
on the combination of skeletal tracking information with
raw depth readings from the sensor to identify the cyclical
patterns in jittery, low-resolution data. Such subtle nonverbal
signals may be useful for informing models of users’ psy-
chological states during communication with virtual human
agents, thereby improving interactions that address important
societal challenges in domains including education, training,
and medicine.
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I. INTRODUCTION

Nonverbal behavior, such as body posture, gaze, facial
expressions, and gesture, plays a critical role in human
communication. These behaviors can convey a multitude
of information about the attention, emotions, attitudes, and
physiological states of conversation participants [1] [2] [3].
As such, user state sensing is a major technological chal-
lenge for providing realistic and meaningful experiences
with virtual human agents, commonly used in a variety of
domains including education [4], training [5], and medicine
[6]. However, in addition to measuring overt behaviors, it
is also beneficial to detect much more subtle signals that
can provide additional insight into the psychological and
physiological state of the user.

Recent advances in depth-sensing technology has led to
the widespread proliferation of low-cost devices that can
capture scene data and human motion in 3D. Sparked by
their relatively low cost and the fact that they can track
motion without any markers or worn devices, there is a
great deal of burgeoning interest in using these sensors for
unobtrusively measuring user behavior. Chief among them is
the Microsoft Kinect sensor, which was released in late 2010
and currently holds the world record as the fastest selling
consumer electronics device in history.

In this paper, we describe two approaches for unobtru-
sively measuring subtle nonverbal signals using the Mi-
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crosoft Kinect sensor. First, we demonstrate how respiratory
rate information can be extracted by observing the cyclical
expansion and contraction of the user’s chest. Next, we apply
a similar approach to detect a specific type of fidgeting
behavior known as “leg jiggling.” We believe that these
subtle signals, combined with other well-known methods
of interpreting nonverbal human behavior, will be useful
for improving future virtual human interactions and other
context-aware computing applications.

II. PREVIOUS WORK

Recognition and analysis of human motion is one of
the most active topics in the field of computer vision, and
the quantity of literature on this topic is vast. A fairly
recent survey of techniques can be found in [7]. Many
existing approaches focus on analyzing motion in standard
videos, and consequently may not always be fast enough for
time-sensitive real-time interactions. However, the release
of the Microsoft Kinect has prompted a number of action
recognition papers that have leveraged its capability to
generate both RGB images and corresponding depth maps
of the scene (e.g. [8] [9]). Additionally, the skeletal tracking
capabilities provided by SDKs from Microsoft Research and
OpenNI/PrimeSense have been leveraged for a multitude of
applications such as repurposing traditional video games
[10], rehabilitation [11], interactive storytelling [12], and
gesture recognition for social robots [13]. However, most
of the existing literature focuses on body posture and hand
gestures, and to the best of our knowledge, this paper
represents the first attempt to recognize the subtle motions
of breathing and fidgeting with consumer depth sensing
technology.

III. RESPIRATORY RATE

Respiration is a necessary human activity that is known
to vary closely with emotional state, making it a potentially
useful indicator of psychological changes such as stress or
relaxation [14]. Typically, accurately measuring respiration
requires a physical apparatus placed either on the body or
near the mouth (e.g. [15]). To estimate the user’s breath-
ing rate unobtrusively, we use the Kinect depth sensor to
measure the average depth over time of the point cloud
that corresponds to the user’s chest. This method relies



upon the cyclical expansion and contraction of the chest
cavity during breathing. However, measuring this behavior
with the Microsoft Kinect sensor introduces several notable
challenges. First, we were concerned that the sensor would
not provide enough fine-grained accuracy to reliably detect
the subtle motions of breathing. Additionally, we observed
that in terms of appearance, this complex muscular process
manifests itself differently between people depending on
body type and posture.

The first step in creating a generic solution is to isolate
the area corresponding to the chest cavity in the depth map.
To do so, we take advantage of the fact that the Microsoft
Research Kinect SDK also provides a skeletal tracker. The
chest cavity is defined as a rectangular region outlined using
the position of the shoulders and the length of the torso in the
skeletal model. We only measure the top half of the torso, as
this generally represents the area that has the greatest depth
displacement from breathing motions.

Once the chest cavity is defined, we calculate the average
depth (distance away from the sensor along the Z axis)
of all pixels within the chest cavity. While the depth of
each individual pixel may fluctuate randomly due to sensor
noise, we expect that as the chest expands and contracts,
this number will fluctuate in a reliable and cyclical manner.
While the measurement of this data is somewhat trivial
when the user is in a fixed position relative to the sen-
sor, it becomes more challenging when the user moves
around. Because the accuracy of the sensor and skeletal
tracking algorithms are imperfect, macro-scale body motions
sometimes mask the subtle movement we are attempting to
estimate. One troublesome source of noise is the fact that
the skeletal positions that determine the bounding box of
the chest cavity are constantly changing. Thus, since we are
assuming that the user is in a sitting position, we define
the chest cavity in a fixed position, and only recalculate
the bounds if the user moves relative to the Kinect by
an amount greater than a certain positional threshold. In
informal testing, we determined a minimum threshold of 10
pixels to be a reasonable value that increases the reliability
of the chest cavity depth calculation.

To estimate the respiratory rate, we need to look for
cyclical patterns in the raw depth measurement. When the
user inhales, we would expect the chest to expand, resulting
in a depth measurement that decreases. Conversely, the depth
measurement will increase when the user exhales, causing
the chest cavity to contract. These two states alternate, with
each breath consisting of a period of inhalation followed
by a period of exhalation. However, since the data from
the Kinect is noisy, the average chest depth may rapidly
fluctuate up and down even though it is following a general
trend consistent with a breathing motion. Thus, to find
the inflection points in the breathing signal, we look for
periods of consistent rising and falling over time. The depth
measurements are divided temporally into four consecutive

OUT RATE: 19 breaths per minute

Figure 1. Measuring breathing with the Microsoft Kinect sensor. The
graphed line shows the cyclical fluctuation of the chest cavity expansion
and contraction from inhalation and exhalation. The breathing state (IN or
OUT) along with the respiratory rate is also displayed on screen.

periods of three frames each, resulting in a total window of
12 frames. For each period, the average depth is calculated
across the three frames to remove fluctuations due to noise.
If the differences between all four periods are positive,
then we consider this an exhalation. If the differences
show consecutive negative moment, then it is labeled as an
inhalation.

Once the user’s breathing motions has been identified,
estimating the respiratory rate at a given instant in time is
a simple process of measuring the elapsed time between
consecutive breaths. In our implementation, we maintain a
list of the previous recorded data for the previous 10 seconds.
A weighted average is then applied, with a higher weight
assigned to the more recent data. This resulting calculation
provides a balance between providing a stable measurement
over time while also being responsive to sudden changes in
behavior. Figure 1 shows an example of our respiratory rate
application.

One important caveat of this technique is the user moves
physically closer or further away from the sensor by more
than a small amount, it will momentarily disrupt the breath-
ing measurement until the a stationary pose is resumed. In
general, due to the accuracy of the sensor, large or quick
displacements of the chest cavity will mask the fine-grained
fluctuations from breathing. In the future, this approach
may be improved by using skeletal information to filter and
stabilize the depth map. However, for cases where a user
is standing still or sitting in a chair, we were pleasantly
surprised that such a subtle motion could be unobtrusively
measured using a relatively coarse sensor such as the Kinect.
Of course, readings vary with different body shapes, breath-
ing styles, and, like many other Kinect applications, clothing
style. However, our informal tests have indicated that this
technique can return surprisingly accurate results which,



under the right conditions, are comparable to other more
intrusive measurement methods.

IV. FIDGETING

Another subtle, yet possibly suggestive behavior is fid-
geting. These involuntary restless movements are often as-
sociated with nervousness, and many studies have observed
increased incidence of fidgeting behaviors during situations
involving conflict or stress (e.g. [16]). As a general term,
fidgeting can also include shifting in one’s chair, playing
with jewelry or hair, repeated head motions, and an assort-
ment of other movements. We focus specifically on “leg
jiggling,” a rapid and repetitive up and down movement of
the leg that has been previously suggested by researchers
to be a possible indicator of tension in both American and
Asian cultures [17]. Given the potential implications of this
behavior on the user’s mental state, it is a potentially useful
signal to measure unobtrusively.

Similar to the respiratory rate technique described in the
previous section, our method of detecting fidgeting uses
depth map data combined with skeletal information from
the Microsoft Research Kinect SDK. Knee oscillation is
different from chest oscillation in one fundamental way.
When the user it sitting down, the cyclical variation is
vertical in relation to the sensor rather than fluctuations in
depth. At first, one might think that we can simply measure
the vertical motion of the knee joint of the skeletal model.
However, even though the skeleton is tracked at 30 frames
per second, the skeletal data is too approximate, jittery, and
slightly delayed compared to the depth cloud data. Instead,
we use the skeletal information to determine the approximate
position of the knee joints within the 2D depth map.

Once we have the approximate knee position (which is
typically around the center), the next step is to determine a
more exact point along surface of the user’s leg immediately
above the knee. To do this, we cast a ray upwards, measuring
the depth of each pixel along the line. When the depth
abruptly increases, we assume that the top of the knee has
been reached. This method works regardless of whether or
not the knee is facing the sensor, because an abrupt change
in depth will either refer to the slope of the user’s thigh, the
torso, or the scene background, depending on how the user
is sitting.

Using the top of the knee as determined by the depth
map, we can then measure the cyclical vibration of the leg.
A single vibration is considered to be a rapid motion upward
followed by a rapid motion downward. To distinguish these
motions from other types of body movement, we apply a
minimum speed threshold to consider the motion a fidgeting
behavior. In informal testing, we determined that a threshold
of approximately 9 pixels/sec on the 320x240 depth map
produced reliable results at typical distances away from
the sensor. The frequency of vibration is calculated and
displayed using the same method described for respiratory

FIDGETING RATE:
Left knee: 84 vibg@tions per minute
Right knee: 90 virations per minute

Figure 2. Measuring “leg jiggling” fidgeting behavior with the Microsoft
Kinect sensor. The two vertical lines show the approximate knee position
returned from the skeleton tracker (cyan dot) as well as the point along the
surface of the leg that is used to measure leg oscillation (red dot).

rate (Section III). Figure 2 shows an example of our test
application that displays the vibration rate of each leg
independently.

While this technique when developed assuming that the
user would be in a neutral seated position with legs un-
crossed, our informal tests have shown that it is robust to
many different poses. If the user’s legs are crossed, the
application can still detect the oscillations of the knee height
that are necessary to identify fidgeting behavior.

V. DISCUSSION AND CONCLUSION

Measuring the user’s respiratory rate can be considered a
form of directed depth testing. In the future, the technique
presented in this paper may be extended by isolating the
chest cavity using more complex methods. For example, to
adapt to users with different breathing styles, a calibration
could be performed to isolate the specific areas of the chest
that most strongly oscillate during breathing. Additionally,
methods of filtering and stabilizing the depth map as the user
moves around would be an important step towards detecting
such subtle fluctuations in situations where it can not be
assumed that the user is in a stationary seated or standing
position. Additionally, directional audio sensing and echo
cancellation using the Kinect’s four microphones could be
used to isolate breathing-related sounds. This could be used
to improve robustness of breathing detection when visual
information alone is unreliable.

“Leg jiggling” is a specific form of fidgeting, but there
are many other manifestations of this behavior, such as
rapid repetitive motions of the fingers. Due to resolution
limitations, the ability of the Kinect to isolate and track in-
dividual fingers at full-body distances is highly questionable.
However, it may be possible to detect the presence of rapid
finger motions, even if the sensor does not have the required



fidelity for finger tracking. Additionally, other fidgeting
behaviors such as stroking one’s beard or playing with
hair would also likely be detectable using the sensor. Thus,
developing other types of signals that indicate fidgeting or
agitation is an open area for future work.

In both cases, robust evaluation of performance of these
algorithms with a variety of users, distances, orientations,
and movement frequencies is necessary before they can be
applied in a practical setting. Our long term goal is to
leverage these signals, along with other methods for both
verbal and nonverbal behavior understanding, to inform a
model of the user’s psychological state. This is an important
step towards creating lifelike virtual human agents that
can communicate more effectively and address important
societal challenges in domains including education, training,
and medicine.
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